
DRAFT

DRAFT

JAVA Naming Conventions

1. Introduction As JAVA is increasingly used within the DII COE, the potential for JAVA
classes to have conflicting names increases. This paper explains the potential problem and
provides a simple naming convention to prevent these conflicts.

1.1 Classes and Objects An object is defined by it class, which describes everything that objects
of that class know (its attributes) and can do (its methods).

Important Definitions
Objects are individual instances of a class. A class is a template or blueprint from which an object
is actually constructed. For example, we might have an Employee class, with attributes like dob,
salary, job title, and methods like raiseSalary(), hireYear(), getName() and print().

In Java, we can create a new Employee object or instance this way:

Employee staff = new Employee();

In the above example a new object was created by first using a preexisting class (Employee),
declaring it with a new name (staff) and then creating a new instance of it1.

1.2 Java File names and Directory Structure A Java source code file has the extension .java.
Each class definition in a .java file is compiled into a separate Aclass file@ with the extension
.class2.

1.3 Package A package is a group of related Java classes or interfaces. When you are writing
Java code, you can put a class or multiple classes into a package. After classes are written and
packaged, you can call on classes in a package by using an import statement.

All files of a package must be located in a subdirectory that matches the full package name. For
example, all files in the Java.util package are in a subdirectory java/uit/ (Unix) or java/util
(windows)3.

1.4 CLASSPATH The CLASSPATH command tells the compiler where to start looking for a
package in the file system.

1.5 Import The import command allows programmers to use the names of classes directly by
Aimporting@ just the name of the full package4.

As a result, the import statement makes Java classes accesable using an abreviated name (of

DRAFT

DRAFT

course Java classes can always be referred to by their fully qualified name).

Without using the import command, we might write the following Java code:

that.really.long.package.name.ClassOne first;
that.really.long.package.name.ClassTwo second;
that.really.long.package.name.ClassThree third;

This code declares references to ClassOne, ClassTwo, and ClassThree which all belong to the
package that.really.long.package.name.

Now using the import command, we can write:

import that.really.long.package.name.*;

ClassOne first;
ClassTwo second;
ClassThree third;

2.The Problem When two classes with the same name are imported into the same applet or
application a conflict occurs.

The graphic below shows a notional directory/file system where two class libraries are stored, one
in h:\seg1\classes and one in h:\seg2\classes. We want to follow the Java community convention
of putting class files into a directory named classes.

DRAFT

DRAFT

When a developer uses the above directory/file system the following problem can occur:

In UNIX the classpath would be set as:
setenv CLASSPATH = c:/h/seg1/classes; c:/h/seg2/classes

In Windows NT/95:
set CLASSPATH = c:\h\seg1\classes; c:\h\seg2\classes

Now, consider the following Java code:

//declaring and instantiating
Draw draw_obj1 = new Draw(); //**PROBLEM - which Draw class??**
Draw draw_obj2 = new Draw(); //**PROBLEM - which Draw class??**
Foo myfoo = new Foo(); // OK, no conflict
Goo yourgoo = new Goo(); // OK, no conflict

When we start to declare and instantiate objects, we run into trouble, since we cannot
differentiate between the Draw class in seg1\classes and the Draw class in seg2\classes.

3. Proposed Solution By using the full class name of the segment (not the segment prefix) within

the directory structure we can provide a unique name for each Draw class.

DRAFT

DRAFT

The code from the first example can now be modified to use the unique names for each of the
Draw classes. The CLASSPATHs are set as before:

In UNIX the classpath would be set as:
setenv CLASSPATH = c:/h/seg1/classes; c:/h/seg2/classes

In Windows NT/95:
set CLASSPATH = c:\h\seg1\classes; c:\h\seg2\classes

//import all classes in the segment1 and segment2 class packages
import segment1.*;
import segment2.*;

//declaring and instantiating using full class specification to avoid name conflicts
segment1.Draw draw_obj1 = new segment1.Draw();
segment2.Draw draw_obj2 = new segment2.Draw();

// because there is not a naming conflict between Foo and Goo we don=t have
// to use the full class specification. The classpath and import statements combine to enable the

//following unambigous abbreviated references. But fuller qualification would help preclude
//future problems.

DRAFT

DRAFT

Foo myfoo = new Foo();
Goo yourgoo = new Goo();

The difference between this code and the first example occurs within lines 5 - 7. With the segment
name now used within the directory structure we can provide a unique name for each class. The
class name maps to the subdirectories under the directories defined by CLASSPATH. The use of
the segment name within the directory structure is mandatory for the COE.

To extend the above naming system we could also use the segment=s unique prefix within the class
library. The prefix is a unique descriptor for the segment provided by configuration management
(CM).

Code example:

In UNIX the classpath would be set as:
setenv CLASSPATH = c:/h/seg1/classes; c:/h/seg2/classes

In Windows NT/95:
set CLASSPATH = c:\h\seg1\classes; c:\h\seg2\classes

//import all classes in the Segment1 and Segment2 class packages
import segment1.*;
import segment2.*;

//declaring and instantiating
Seg1draw draw_obj1 = new Seg1draw();
Seg2draw draw_obj2 = new Seg2draw();
Seg1foo myfoo = new Seg1foo();
Seg2goo yourgoo = new Seg2goo();

The directory/files system would look like:

DRAFT

DRAFT

In lines 5 - 9 we once again declared and instantiated new objects. This time we only had to use
the class name because they were unique. The compiler finds Seg1draw.class using both classpath
(c:/segment1/classes) and then import (import segment1.*).

Why not simply use the segment prefix instead of the segment name in the directory structure to
create a unique class name? As systems grow, segments may have several class libraries
contained within them. The segment prefix while unique between segments would not be unique
between the classes contained within a segment. For example the segment prefix UB is used to
cover at several segments;including IFL, TMS, and UCP. The use of the segment prefix with the
class name is optional. Developers are cautioned that naming conflicts within a segment are still
possible and should be avoided.

1.Diskin, David. AIntroduction To JAVA@. DISA/JEXFAdvanced Tech. Branch:
http://spider.osfl.disa.mil/dii/atd/Java_brief/index.htm

2. Flanagan, David. JAVA in a Nutshell. Cambridge: O=Reilly, 1997, P. 17-18

3.Koosis, Donald, and David Koosis. JAVA Programming for Dummies. Foster City: IDG Books
Worldwide Inc., 1997, P. 143

4.Lemay, Laura and Charles Perkins. teach yourself JAVA in 21 days. Indianapolis: Samsnet,
1996, P. 327

